Wednesday, March 8, 2017

PWM Control Notes

Peak Voltage:
The KB PWM control I use produces a peak voltage of 160VDC which is very rapidly switched on and off to produce a lower average voltage. I was worried about the 110VDC motor being hit with 160VDC, but after research I found if the frequency is high enough, then it doesn't really matter (assuming the peak voltage isn't absurdly high).
"As long as the PWM frequency is fast enough, it's average voltage is what counts. No, the average PWM voltage should not exceed the motor's rated voltage, at least not for long. This is no different that applying a DC voltage to the motor.

Using a high voltage supply and then less than 100% PWM to compensate is a perfectly legitimate way to run a motor, again, as long as the PWM frequency is fast enough. In effect you are creating a switching power supply that converts the high voltage to the lower one used to drive the motor. It may not look that way because the induction of the motor windings are a integral part of this power supply.
"

- Olin Lathrop

The things which kill a motor are overloaded bearings, bearing run too fast, brush arcing, and damage from overheating. None of those is really a result of voltage, and a high frequency PWM drive will actually allow the motor to run cooler while producing more torque.


Adjusting Max Voltage:
The high frequency a PWM motor control outputs to the motor can leave a digital multimeter confused or inaccurate if you're trying to measure the max volts, while I've found using an analog multimeter will respond accurately to the PWM output.

If you have a digital multimeter which can read duty cycle and you know the peak voltage (160VDC in case of the KBWS using 115VAC), you can multiply the duty cycle by the peak voltage to get the average voltage, which is what the motor should see. 

To set the max volts to 110VDC for the mini lathe and mini mill's motors I first used a analog multimeter to set the max output to 110VDC. Then to double check I calculated the motor RPMs from the spindle RPMs since I knew the gear ratio; the lathe has a 5000 RPM motor while the mill has a 6000 RPM motor.


No comments:

Post a Comment